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Abstract--Turbulent bubbly air/water two-phase up and down flows in a circular test section were 
investigated. Important flow quantities such as local void fraction, liquid velocity and the Reynolds 
stresses were measured using both single-sensor and three-sensor hot-film anemometer probes. For up 
flows, it was found that the bubbles tended to migrate toward the wall and thus the void fraction profile 
showed a distinct peak near the wall. In contrast, for down flows, it was found that the bubbles tended 
to migrate toward the center of the pipe causing void "coring". It was also found that the observed wall 
peaking and coring phenomena, and thus the radial void distribution in up and down flows, could be 
predicted by considering the turbuIence structure of the continuous phase and lateral lift force acting on 
the dispersed phase (i.e. the bubbles). 

All Reynolds stress components were measured using a special 3-D conical probe. In two-phase flows, 
the normal Reynolds stress components (i.e. u-', v-' and w z) showed nearly flat profiles in the core re ,on  
(r/R < 0.8) and, except near the wall, the turbulence structure was more anisotropic compared to 
single-phase flows. Normally, the presence of the bubbles increased the level of turbulence in the flow. 
However, because the bubbles in turbulent two-phase flow enhance dissipation as well as promoting the 
production of turbulence kinetic energy, it was found that for higher flow rates the presence of bubbles 
suppressed the level of turbulence. 

1. INTRODUCTION 

One of the most important and yet least understood aspects of two-phase flow are the lateral phase 
distribution mechanisms which occur. This multidimensional effect is often quite pronounced and 
must be considered in the accurate analysis of heat and momentum transfer for chemical and power 
industry applications. Much of the analysis which has been published to date has been concerned 
with 1-D rather than multidimensional effects. However, the lack of information on transverse 
phase distribution can result in significant restrictions in many practical applications. For example, 
the measured flow and enthalpy in the various subchannels of a nuclear fuel rod bundle cannot 
be predicted using standard subchannel computer codes such as COBRA because the turbulence 
models in such codes are insufficient to predict the observed lateral void distribution. Therefore, 
before one can accurately predict such important thermal-hydraulic phenomena as the local critical 
heat flux (CHF), an accurate flow and void distribution must be predicted. 

The purpose of the study presented herein was twofold. The first purpose was to develop reliable 
methods to measure such two-phase flow parameters as local void fraction, liquid phase velocity 
and the turbulent stresses. The second purpose was to compare the measured void distribution with 
the predicted distribution based on a mechanistic model. A unique relationship was deduced 
between the lateral phase distribution and the structure of turbulence in the continuous phase which 
confirmed the importance of turbulence modeling in two-phase flows. 

Despite numerous experimental and analytical studies of two-phase flow during the past 20 years, 
no one was able to satisfactorily predict lateral phase distribution. This was due to inadequate 
two-phase flow constitutive models and insufficient basic two-phase flow data. Several of the most 
significant previous studies are summarized next. 

The lateral void distribution for a bubbly flow was apparently first analyzed by Bankoff (1960). 
He assumed a power law distribution for both the velocity and the void fraction: 
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where U is the local mean velocity, ~ is the local void fraction and the subscript C£ denotes the 
centerline of the pipe. Thus. the void concentration was assumed to be a maximum at the center 
of the pipe, decrease monotonically in a radial direction and vanish at the pipe wall. 

Levy (1963) extended single-phase turbulent mixing-length methods to two-phase flows and 
predicted two-phase density and velocity distributions which also peaked at the centerline of the 
pipe. 

Beattie (1972) assumed a linear relationship between the velocity of the continuous phase (liquid) 
and the void fraction: 

= a UL + b, [3] 

where a and b are constants. He then applied a mixing-length model to [3] to derive a power law 
void fraction profile which again peaked at the center of the pipe. 

Delhaye (1969) derived a radial void fraction profile by solving the two-fluid momentum 
equations. In his derivation, several key assumptions were made. He used the relative velocity 
relationship proposed by Zuber et al. (1967): 

Us 
( u .  - u L )  = (1 - ~------5' [41 

where Us is the bubble velocity and U~ is the bubble's terminal rise velocity. Moreover, the 
interfacial drag force (FD) was given by 

FD = K vL d .  d ( U .  - UL), [5] 
pL(UB -- UL) 2 d~ e (Us - UL) dr 

where K is a positive constant and e is the so-called turbulent viscosity, 

d 
e g -~k2(R - r)-' drr (UB - UL). [6] 

Delhaye finally deduced a power law void fraction profile having a maximum at the pipe centertine. 
One of the reasons that Delhaye's model was unable to predict the observed wall peaking of voids 

is that the turbulent fluctuations of the continuous phase were neglected. As a result, the radial 
pressure distribution was uniform. Actually, the radial pressure distribution in fully-developed 
bubbly two-phase flow is not uniform, rather, as given in the Appendix, it is given by 

- -  t '  (1 - c~) PL (v 2 - w-') 
p(r )  = p ( R ) -  (1 - :~)  PLY2- JR r '  dr' ,  [7] 

where v 2 and w-' are the turbulent fluctuations in the radial and azimuthal directions, respectively. 
It can be seen that the local static pressure is lowest in the region near the wall where turbulence 
production is the largest. As will be discussed subsequently, this nonuniform pressure field strongly 
influences the lateral phase distribution. 

Kobayasi et al. (1970) proposed an empirical formula to predict the void fraction distribution 
of bubbly and slug flows. Although this empirical equation successfully predicts the observed void 
"peaking" near the wall for two-phase up flows, it has no physical basis. 

Inoue et al. (1976) suggested that the turbulence exchange of momentum between the liquid and 
vapor phases can be characterized by a mixing length in the liquid phase. Based on the measured 
shear stress and void fraction distributions, the authors calculated a two-phase mixing length and 
showed that it is larger than in single-phase flows. They concluded that "wall-peaking" was in some 
way a result of the two-phase mixing length which also showed a peak near the wall. While the 
relationship proposed between the structure of turbulence and the lateral void distribution appears 
to be reasonable, lateral life was not considered, nor was a functional form of the two-phase mixing 
length given by the authors. Unfortunately, this seriously limits the usefulness of their results. 

Based on above discussion, it can be concluded that most previous analytical investigations either 
did not predict the observed phenomena, shed any new light on the physical mechanisms 
controlling lateral phase distribution or were not complete enough to allow for accurate 
predictions. 
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Perhaps the most important quantity in modeling the lateral phase distribution is the turbulence 
structure. The turbulence structure was successfully incorporated into the modeling of phase 
distribution by Drew et  al. (1978), Drew & Lahey (1979, 1981, 1982) and Lahey & Drew (1979). 
Making reasonable assumptions about fully-developed two-phase flow, the authors were able to 
integrate the phasic momentum equations of a two-fluid model analytically. The resultant radial 
void fraction distribution was given by 

. 7  

:d  : ~ K..L(r)F~(r) t-q e -(I-q) 

( l  - ~'~ : -  C_, . F A r )  J0  

where K~ ~ 1 : - ~Pk u~ is the turbulent kinetic energy in direction i for phase k, 
I 

f~a u~ 
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is the (anisotropic) ratio of the directional liquid-phase turbulent kinetic energies to the total 
liquid-phase kinetic energy, q = K ~ J K : ,  is the constant of proportionality between the turbulent 
kinetic energies of each phase and C, is the integration constant. Clearly, the void distribution 
depends on the structure of the liquid-phase turbulence. Although all interfacial forces in the radial 
momentum equations were neglected by Drew & Lahey (1982), their model qualitatively predicted 
the void peaking phenomenon for bubbly two-phase up flow if the appropriate turbulence structure 
of the continuous phase was prescribed. Subsequently, the authors extended this model to down 
flows (Drew & Lahey 1982). By using mixing-length theory to model the turbulence stresses in the 
continuous phase, they showed that for down flows the lateral void distribution peaked at the 
center of the conduit instead of near the wall. This "coring" of the vapor phase in down flow agreed 
qualitatively with the measurements of Oshinowo & Charles (1974). 

As can be seen in [7], turbulence induces a lateral pressure gradient which, because of differences 
in the axial inertia of the vapor and liquid phases, causes the vapor phase to preferentially collect 
in low-pressure zones, thus leading to a nonuniform lateral void distribution. In addition, 
interfacial forces such as the drag force, lift force, virtual mass force, Basset force and Faxen force 
may also play an important role. In steady fully-developed two-phase pipe flow with no swirl, 
lateral lift forces exist in the radial direction. In dispersed bubbly two-phase flow, the lift force is 
due to an unbalanced pressure distribution around the interface resulting from interaction with the 
liquid-phase shear gradient. Therefore, in order to accurately predict the lateral void distribution, 
both the turbulence structure and the lateral lift force should be incorporated into the analysis. 
The derivation of a mechanistic model for void distribution which includes both effects will be 
presented in section 7 of this paper. 

2. DISCUSSION 

There have been thousands of papers published on either void fraction or single-phase turbulence 
measurements. Unfortunately, there have only been a few publications concerned with the 
turbulence structure of two-phase flows. 

Serizawa (1974; Serizawa et  al. 1974a-c) studied turbulent fully-developed two-phase bubbly up 
flows in a circular conduit. He used electrical resistivity probes to measure the local void fraction, 
the bubbly impaction rate, the bubble velocity and its spectrum. Turbulence quantities, such as the 
liquid-phase mean velocity, and the axial turbulent fluctuations were measured using a hot-film 
anemometer. He reported that the vapor-phase distribution was nearly uniform in the pipe's core 
region and was peaked near the wall. Interestingly, the bubble velocity, the water velocity and the 
local relative velocity showed fairly flat profiles in the radial direction without any maxima near 
the wall. More recently, Serizawa et  al. (1983; Serizawa & Michiyoshi 1984) used a dual-sensor 
hot-film probe (a miniature X-type film probe) to measure the axial and radial turbulent 
fluctuations and the Reynolds stress. The bubble-induced velocity fluctuations were found to 
increase with local void fraction. The authors also claimed that the data indicated nearly isotropic 
behavior for highly turbulent bubbly flows--an observation not supported by the data presented 
herein. 
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Lance (1979; Lance et al. 1980) reported grid-generated turbulent two-phase flow measurements 
in a large square channel. The void fraction, the liquid velocity and the axial velocity fluctuations 
were measured using a conical hot-film probe. The author concluded that in the absence of any 
mean velocity gradient, the axial turbulent fluctuation intensity increased as a function of void 
fraction. However, since the maximum void fraction in his investigation was <3°.,5, these 
conclusions are not general. 

Mari~ & Lance (1983) measured the turbulent fluctua:ions ,n ~x~o-phase flows using a 
laser-Doppler anemometer (LDA) system. Their study was restricte:d ~o low ~oid tractions, and 
also showed that the turbulent fluctuations increased with void fracason. 

Sullivan et al. (1978) and Theofanous & Sullivan (1982) measured the axial and radial turbulent 
fluctuations in a circular channel by using both a hot-film anemometer and an LDA system in 
dispersed bubbly flows. The authors predicted the axial fluctuation at the pipe's centerline by 
assuming that the turbulence level in the liquid phase is the sum of ~all-induced and bubble- 
induced turbulence. Although the predictions agreed well with their data, the model was never 
tested for highly turbulent flows where other investigators (e.g. Tsuji et at. 1984) found that the 
dissipative effects of the bubbles dominate. 

From the above discussion, it is clear that the previous experiments on turbulent two-phase flow's 
were incomplete. On the other hand, we need information on two-phase flow turbulence if many 
important problems in two-phase flow are to be solved, such as phase distribution. It was the 
purpose of the present research to develop a consistent and reliable methodology with which to 
measure the 3-D turbulence quantities and the void fraction in two-phase flows, ~o take a complete 
set of such data, and to compare these data to a mechanistic model for the lateral phase 

distribution. 

3. E X P E R I M E N T A L  METHODS 

The air/water loop shown schematically in figure 1 had a 57.15 mm i.d. test section which could 
be turned upside down to allow for measurements of both up and down flows. A single sensor 
cylindrical hot-film probe, TSI-1218-20W, was used to measure the mean and fluctuations in the 
axial liquid velocity, and the local void fraction. To measure the Reynolds stress components (i.e. 
u 2, v'-, w'-, uv, vw, uw)  in the liquid phase, a special 3-D conical probe, shown in figures 2 and 3, 
was used. Compared to commercially-available 3-D probes, this probe was more rugged, less 
susceptible to contamination and much smaller. The frequency response of the 3-D conical probe 
was evaluated and it was found that all three sensors on the probe respond to the velocity 
fluctuations with frequencies up to 10 kHz without significant attenuation (Wang 1985). 

In order to relate the probe signals to the Reynolds stresses, the velocity vector can be 
decomposed into the components perpendicular and tangential to each sensor by appropriate 
coordinate transformations. Then the effective velocities measured by each sensor can be 
determined using calibration data for the cooling factors. The sixt fundamental components of the 

Reynolds stress tensor were thus determined by 

U ~" A - - I  e ,  [9] 

where e = ( e ~ , e ~ , e ~ , e ~ e z ,  ele3, eze3) T and ei are the effective signals measured on sensor i, 
u = (u'-, v z, w:,  uv, uw,-v~-d) T designates the Reynolds stresses (divided by -PL)  and A is a 6 × 6 
matrix used for the coordinate transformations (Wang 1985). To verify the above method, a 45: 
cylindrical probe was also used to measure u-', v 2 and ~ in the core region by rotating the probe 
into three different orientations. The analytical basis for the measuring technique using a 45 ~ probe 

has been given by Wang (1985). 
The anemometer signal was sampled at 10 kHz using an A I D  converter and the results were fed 

into a minicomputer for processing. To discriminate the vapor phase (i.e. air) from the liquid phase, 
a method combining level and slope thresholding was used (Wang 1985). Figure 4 is a schematic 
of a typical signal and the corresponding position of the bubble with respect to the probe. Note 
that the vapor phase spans times from time tA to tc, while sharp changes in the signal occur only 

tNote that S'yTnmetry arguments yield all nine components of the Reynolds stress tensor from these six components. 
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Figure 1. Schematic of the experimental facility. 

at t~ and t C. Thus the measured local void fraction normally underestimates the actual value. The 
error in the local void fraction measurements was determined using a single-beam y-ray 
densitometer as a standard and corrections v~ere made. 

4. V O I D  F R A C T I O N  D A T A  

A void fraction correction method based on measured local parameters and the y-ray 
densitometer results was developed by Wang et aL (1984). This correction method was based on 
the parameter, We dB/dp, where We is the bubble Weber number and dB and dp are the diameters 
of the bubble and probe, respectively. For up flows, this method gave results consistent with the 
y-ray measurements. Unfortunately, the method was never calibrated for down flows, thus an 
alternate method for void fraction correction was needed for down flows. Fortunately, one can also 
infer void distribution from the ~ measurements. As shown by Wallis (1969), for fully-developed 
two-phase flow in a vertical pipe the shear stress distribution can be found by balancing the forces 
acting on a cylinder of  radius r. The result is 

r___(_dp ~ g(PL--PG) r" 
rL(r) - 2(1 - - : 0  \ dz - P L g j  --  r( l  ~-) J o  (l ~ ) r ' d r ' ,  [lO] 

Three Sensor  .76 
Conical Probe 

(Dimensions in ram) 

Figure 2. The 3-D conical probe. 
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where r L = -PL ~ is the turbulent shear stress and the axial pressure gradient, dp/dz, is known 
since it was measured from the pressure taps along the test section. 

Typical Void distributions were predicted using the measured values of zL(r) and dp/d:, and the 
force balance, [10]. These distributions are shown with corrected void data in figures 5-10, where 
the error bars were worked out using standard propagation-of-error techniques. For up flows, they 
agree very well, thus supporting the accuracy of the Reynolds stress measurements using the 3-D 
conical probe. However, because the 3-D conical probe had a spatial resolution of 4- 1 mm, it could 
not resolve the rapid spatial variation of fi-~ near the wall, thus some discrepancies exist near the 
wall, especially for high flows. 

Because of buoyancy, in down flows one expects the probe to deform and deflect bubbles even 
more severely than for up flows. As shown in figures 8-10, the down flow void data, corrected based 
on the up flow correlation, agrees well in the core region with the void profile deduced from the 
force balance, but differs near the wall. Because of the good agreement for up flows, the predicted 
void distribution using the force balance is considered to be more accurate for down flows. A check 
on liquid mass continuity supports this conclusion (Wang 1985). 

The void fraction profiles for down flows are quite different from those for up flows. For down 
flows, the void fraction stays nearly constant in the core region and then drops abruptly to zero 
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Figure I0. Void fraction profiles. 

as the wall is approached. As discussed previously, void "coring" has been reported previously by 
Oshinowa & Charles (1974) and was predicted qualitatively by Lahey & Drew (1982). In this study 
it was found that for up flows "wall-peaking" became more pronounced for higher liquid flows, 
while liquid flow rate appeared to have little effect on the void fraction profiles for down flows. 

5. AXIAL LIQUID VELOCITY 

Figures 11-14 show some results of the 1-D cylindrical probe measurements. As expected, for 
the same flow rate single-phase down flows have the same mean liquid velocity and axial fluctuation 
profiles as those in up flows. In two-phase flows, the presence of voids tends to flatten the liquid 
velocity profile for both up and down flows. Moreover, for high flows in the upward direction and 
for the most down flows, the location of  the maximum liquid velocity occurred off the pipe's 
centerline. For up flows, the higher vapor concentration near the wall apparently causes the liquid 
to move faster due to bubble-induced drag. Similar trends have been reported by Malnes (1966) 
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and Theofanous & Sullivan (1982), and were termed the "chimney effect." Note that the maximum 
liquid velocity and the void peak did not occur at the same location, probably because of the 
counteracting effect of high shear stress near the wall. On the other hand, bubble "coring" in down 
flows retards the flow in the core due to buoyancy, and the resultant diversion of liquid into the 
low void region near the wall apparently causes the maximum liquid velocity to again occur near 
the wall. 

6. T U R B U L E N C E  S T R U C T U R E  

Typical Reynolds stresses measured with the 3-D conical probe are shown in figures 15-18. The 
cross terms, u'--ff and v--if, are not shown since they are zero in fully-developed pipe flows (Laufer 
1953). These quantities were actually measured and found to be essentially zero within the 
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experimental error. Moreover, when the simultaneous equations were solved with ~-ff and b-~ set 
to zero, the other Reynolds stress components, u 2, v 2, w 2 and u-~, were not strongly affected. To 
verify the consistency and the accuracy of the 3-D conical probe measurements, a 45 ° cylindrical 
probe was used for various up flows to measure u 2, v 2 and ~-~ in the core region. As shown in figures 
15--17, these independent results agreed quite well. 

It is also significant to note in figures 17 and 18 that the Reynolds stress term ( - ~ ~ )  was never 
negative. In particular, it was always positive in the region of  the flow field in which the local 
maximum in the mean liquid velocity occurred. Since the velocity gradient changes sign, it appears 
that Boussinesq-type models of the form 

d U  E 
rRc = PL (1 -- Ct) (V L + eL) d---~ [11] 

are inadequate to describe the observed data trends. 
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A complete set of single-phase turbulence measurements were made by Laufer (1952, 1953). He 
used a hot-wire anemometer to measure turbulence parameters such as the velocity profile, 
turbulent fluctuations in the three orthogonal directions, the Reynolds stresses and some other 
statistical quantities of interest. His results have been widely employed to check the validity of other 
single-phase turbulence measurements. As can be seen in figure 19, our single-phase turbulence data 
agreed quite welt with Laufer's data, thus further verifying our experimental techniques. 

Normally, the turbulence level increased rapidly to a certain value when a small amount of vapor 
was introduced in to a single-phase flow. Thereafter, additional amounts of vapor had tess effect. 
However, for more highly turbulent flows (i.e. for higher liquid flow rates), the presence of vapor 
decreased the turbulence level, as can be seen in figures 12 and 14. This observation clearly shows 
that the widely accepted superposition hypothesis, which implies that the turbulence level in 
two-phase flow is the sum of the turbulence due to wall-shear-induced and bubble-induced 
turbulence is invalid. Indeed, according to this hypothesis the turbulence level should increase 
monotonically with vapor content; obviously this is not always the case. 

A reduction in the two-phase turbulent fluctuations has also been observed by Serizawa (1974) 
and Tsuji et  al. (1984). Serizawa ascribed this phenomenon to competition among the following 
effects: 

(1) A decrease in the effective volume of the liquid phase for energy dissipation due 
to the volume occupied by the bubbles--the effect being to increase the 
fluctuations. 

(2) Work done in providing buoyancy to the bubbles--the effect serves to reduce 
the fluctuations. 

(3) Energy dissipation associated with the lateral relative motion or rotation of the 
bubbles--the fluctuations may be decreased in order to supply this energy 
dissipation. 

(4) The energy-absorbing character of bubbles--the bubbles may act as an energy 
sink to reduce the fluctuations. 

It is believed that the fourth effect accounts for most of the reduction in the turbulence, however 
a detailed modeling of energy production and dissipation mechanisms is needed to accurately 
analyze turbulent two-phase flow. 

The local isotropy of the three normal fluctuations is also affected by the presence of the vapor 
phase. By introducing the vapor phase, the turbulence structure first becomes more anisotropic 
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everywhere except in the region near the wall. Thereafter the anisotropy is hardly affected by 
introducing more vapor. The typical radial variation of the anisotropy of the turbulence structure 
for single- and two-phase flows is shown in figure 20. 

7. PREDICTION OF RADIAL VOID DISTRIBUTION 

Let us now derive an expression for the radial void distribution in fully-developed turbulent pipe 
flow using the radial momentum conservation equations. Ishii (1975) has formulated a two-fluid 
model by considering the conservation laws for each phase separately. By making the same 
assumptions as made previously by Drew et al. (1978), the radial momentum equation can be 
simplified to 

~r l d  1 
- ~ + -r ~rr (~rz~,~) - -r ~ T ~  + ML = O, [12a] 

for the vapor phase, and 

0p l d  1 
- ( l - ~ ) ~ r r  + - r d r r [ r ( 1 - ~ ) v " e ] - - ( l r  --~)r00L--ML=0' [12b] 

for the liquid phase. 
As shown by Drew & Lahey (1979, 1982) and Thomas et al. (1983), the interfacial lift force 

vector, ML, can be expressed as 

M L = A p t ~  ( U  L - -  UG)  x ~- x U L. [13] 

For the special case of a spherical bubble immersed in an inviscid liquid (i.e. a liquid having an 
infinite Reynolds number), the lift parameter (A) can be shown to be 0.5 (Drew & Lahey 1979). 
Moreover, for fully-developed, axisymmetric pipe flow, the lift force given in [13] reduces to 

euL 
ME = Ap t~ t  ( U L -  UG) -z • [14] 

cr 

The radial pressure gradient (t3p/&) in the momentum equations can be eliminated by combining 
[12a] and [12b]. If we then a s s u m e  PG/Pl. "" 0, neglect the shear stress in the vapor phase and recall 
that 

T,q. = - -  PL t'" [15] 

and 

we obtain 

m 

~0eL = PL w2, [16] 

d(1 - ~ )  
dr - -  + F ( r )  (1 - ~ )  = G ( r ) .  

Equation [17] is a Bernoulli-type differential equation which integrates to 

where 

and 

~(r)=l-{(l-~)+;G(r")expl; 'F(r ')dr ' ldr"}expl-;F(r ')dr'  1, 

[17] 

[18] 

[19] 

v ---/ ] d r "  [201 

If we neglect the lift force term in [18] (i.e. set A = 0), we obtain [8], which, for q = 0, is the same 
result previously derived by Lahey & Drew (1978). 
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Figure 21. The lift force coefficient. 

Since the lift force coefficient, A, was not known for a finite Reynolds number, it was determined 
by evaluating A from [18], in which representative data was used for e(r), F(r) and G(r). In 
correlating the lift force coefficient, A, the approach previously proposed by Eichhorn & Small 
(1964) was employed. They investigated the fluid dynamic forces on spheres suspended in Poiseuille 
flow. By considering the forces on a sphere, the authors correlated the lift force coefficient and 
found that it was a function of  some local parameters, such as particle Reynolds number, velocity 
gradient, particle diameter, pipe d iamet~  and the relative velocity. Using the same local parameters 
and the local void fraction, a dimensionless parameter, ~, which is a generalization of  that proposed 
by Eichhorn & Small (1964) was deduced. This parameter is given by 

a e-= dB dUL/dB 1 y - /Uo)"  
- - - -  = - .  , [211 

U R dr \ D  Re.// \U~J 
where R% _A URddvL is the bubble Reynolds number, UR = (Uo - GL) is the relative velocity and 
g~ is the bubble's terminal rise velocity, given by 

pql  
U~ = 1.18 \P--~LJ " [22] 

As shown in figure 21, the parameter ~ was found to correlate representative data reasonably 
well. As ~ decreases, the lift force increases to 0.5 as the bubble Reynolds number approaches 
infinity (i.e. inviscid flow). When ~ is very large, the lift force coefficient approaches 0.01. The lift 
force coefficient measured by Eichhorn, CL, can be related to our lift coefficient, A, as follows. 

The force, FL, measured by Eichhorn & Small (1964) is given by 

FL = Q~pL (UL - U~)2xd~, [231 

where d~ is the sphere's diameter and U~ is the sphere's velocity. It can be written as 
the lift force per unit volume, as expressed in [14], through the relationship 

ML = • [24] 

Thus, 

A - ~(UL - U~) CL. [25] 

d, dUL 
" dr 

The lift force coefficients (i.e. the A s) of the sphere/liquid system used by Eichhorn were evaluated 
using [25] and found to be ~< 0.01, which is close to our data for large { and small ~, 
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Figure 25. Prediction of the void fraction profile. 

For convenience, figure 21 was fitted by a trigonometric function, 

0.49 ( log ~ + 9.3168"] 
A = 0.01 + - -  cot -~ [26] 

\ (). 1-96-3 /" 
Equations [26] and [14] can then be used with [18] to calculate the effect of the lift force on the 

predicted radial void distributions. Using our data to evaluate the r.h.s, of [18], the local void 
fraction, ~(r), could be predicted. Typical predictions are shown in figures 22-25. Since the lift force 
coefficients scattered about the correlation curve given in [26] by about +0.01, values of A + 0.01 
were used to estimate the sensitivity of the predicted void distribution to uncertainties in the lateral 
lift force coefficient, A. Normally, the predictions agreed with measurements within the error 
bands. Note that the greatest discrepancy occurred near the wall because, as can be seen in [14], 
errors in A are amplified there due to the large velocity gradient in that region. Nevertheless, the 
wall-peaking and coring of voids in up flows and down flows, respectively, are well-predicted using 
the model described in this section. Thus, it has been demonstrated that the turbulence-induced 
lateral pressure field and the lateral lift forces determine how the voids distribute radially. This 
implies that to accurately predict lateral phase distribution, one must be able to accurately predict 
the turbulent structure of the continuous phase. While this is currently a state-of-the-art problem 
it is clear that it is an important area for future research. 
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8. SUMMARY AND C O N C L U S I O N S  

In order to better understand phase distribution mechanisms, both 1-D and 3-D hot-film 
anemometer probes were used to measure the void distribution and the turbulence structure of the 
continuous phase. The void fraction in up and down flows showed two distinct lateral profiles. For 
up flows the void fraction profile exhibited a sharp peak near the wall. In contrast, for down flows, 
the voids migrated toward the center of the pipe and formed a pronounced vapor core, while the 
wall region was relatively free of voids. 

In general, the liquid velocity profile was flattened by the presence of the vapor phase (i.e. the 
bubbles). However, a "chimney effect", in which the maximum liquid velocity occurs away from 
the pipe's center, was observed. Indeed, for some down flows the maximum velocity occurred very 
close to the wall. Moreover, all three normal fluctuations were affected by the presence of the vapor 
phase. Interestingly, these fluctuations do not increase monotonically as the void fraction increases. 
The presence of bubbles in turbulent flows enhances dissipation of  turbulent kinetic energy as well 
as promoting its production. In some cases, the increase in dissipation rate prevails over the 
increase in production rate to give net turbulence suppression. The vapor phase also redistributes 
the radial variation of the turbulent fluctuations. In the core region, the normal turbulent 
fluctuations and the void fraction frequently showed flat profiles. 

A unique relationship between the void fraction distribution and the turbulence structure in the 
continuous phase was derived. This analytical model indicates the importance of turbulence 
modeling in two-phase flow analysis. It also showed that the voids distribute as a result of the 
interfacial lift force and the turbulence-induced lateral pressure distribution. Using representative 
void fraction and turbulence data, the lift force coefficient was computed for different flow 
conditions and the results were then correlated. When this correlation was used with the analytical 
model, both the wall-peaking and coring phenomena seen in all the void fraction data reported 
herein, for up and down flows, were predicted. The unique relationship between the void fraction 
distribution and the turbulence structure in the continuous phase clearly indicates the importance 
of turbulence modeling in two-phase flow analysis. 

Acknowledgement--The authors gratefully acknowledge the financial support given to this project by the 
National Science Foundation (NSF). 

N O M E N C L A T U R E  

A = Lift force coefficient 
C2 = Integration constant 
CL = Lift force coefficient 
d 8 = Bubble diameter 
dp = Probe diameter 

FD = Interfacial drag force 

F, = u 7 /Y u; 
J 

FL = Lift force 
g = Gravitational constant 
JL = Superficial liquid velocity 
Jo = Superficial vapor velocity 
K = Turbulent kinetic energy 
k = Mixing-length constant 

Ki~ --40-5 Pk u~k 
L / D =  Length-to-diameter ratio 

i'v/L = Lift force vector per unit volume 
p = Pressure 
q ~- K.UK.L 
r = Radial distance 
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R 
Re L = 

u ,=  
u~--q 

We = 
u 2, /)2, w 2, u/), uw, /)W 

Pipe radius 
Liquid-phase Reynolds number 
Mean velocity of phase k 
X/~W/pL, Friction velocity 
Weber number 
Reynolds stresses ( +  -PL)  in the liquid phase 

Greek 

= Local void fraction 
~tq. = Centerline void fraction 
PL = Density of liquid 
PG = Density of vapor 

E = Turbulent viscosity 
v = Kinematic viscosity 

#L = Liquid viscosity 
a = Surface tension 

"CrrL ~ - -  PL  U2 

TOOL= --pEW" 
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A P P E N D I X  

Radial Pressure Distribution 

If we eliminate M L by adding [12a] to [12b], we obtain 

. , d ( ) ,  , 
g--r + -r-dTr ~rz,r~ - -r c~zooG + -rdr [r(l - :~) z,rL] - -r (1 - .:~) Zoo L = O. [A.1] 

If we neglect viscous effects in the vapor (i.e. set r~rG = rooG = 0.0) and substitute for the turbulent 
stress terms, 

Trr L = - -  p L  t ' -  

and 
---g 

~'oo L= --PL;V-, 
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[A. 1] becomes 

- -  l 
dp 1 d [ r ( I _ : z ) p L v , _ ] + _ ( I _ ~ ) p L W 2 = O .  
dr r dr r 

This equat ion can be simplified to 

d p  d - -  ' 
dr dr [(1 - :t) pc v'-] -- (1 -- :QpL(V-r -- w'-) = O. 

Integrating the above equation yields 

p(r) = p ( R )  - (1 - 2) pc v-~ -- fr~ (1 -- ~) pL__(V 2 r ,  -- w2) d r ' .  [A.2] 

We note that in regions where the turbulent  fluctuations (i.e. v 2, w 2) are large, the local static 
pressure, p(r), is reduced. 


